When starting a data warehouse or other business intelligence (BI) initiative, several aspects need extra attention due to the inherent differences from other types of implementations. For instance, unlike enterprise-wide software implementations by huge teams, many BI projects are executed by smaller teams receiving continuous business feedback often. The work is typically very creative since it isn’t always anchored to one application but is focused on high data integrity. As a result, some of the aspects I outline below don’t typically get the emphasis they deserve. With this iterative, creative, and data management-oriented approach, consider these often under-appreciated factors of BI success.
1. Chart a Roadmap to Success.
When initiating a BI project, a realistic plan is needed. Don’t worry about not having a 100% solution in mind — simply begin by just “road-mapping” some intermediate goals along with the business users. The roadmap should not be so detailed that it cannot be adapted with the needs of the business over time. Remember, project plans contain the tactical detail that should trace back to the roadmap’s high level, strategic goals. Consider the following on building a solid BI strategy:
- Start in one subject area or a limited list of areas that have enterprise reach (e.g. determining what a “customer” is among multiple data sources or truing up a core set of measures among those data sources).
- Get end users to sign-off on qualified business goals of proven, highest impact value and prioritize so that IT and business teams have a clear path to success.
- Don’t limit project justification to budgeting only. Carefully construct and document a business case that includes profitability measures like increased revenue and/or cost savings to make a full, ROI-oriented argument for management. Corporate functions have been pressed for many years to move from being cost to profit centers so this is another chance for the CIO office to step up. If needed, bring in a third party for external expertise on quantifying benefits and costs.
- Schedule BI roadmap reviews as a mandatory part of the business-planning schedule. Stay flexible, not changing direction on every corporate whim but periodically reflect on why past decisions were made and then make course corrections.
Remember what English writer, mathematician, and logician Lewis Carroll said, “If you don’t know where you are going, any road will take you there.”
2. Make Data Profiling a First Step.
BI efforts should aim to build a “single version of the truth” — a non-redundant and consistent recording of all a corporation’s business data. This is nearly impossible to do, but it is the goal to get as close as possible. The key question is can you can construct a high integrity, relational data model with available data within the BI project budget and timeframe. Data sources, particularly much older ones, often suffer from data validation gaps and sometimes unauthorized data definition changes over time. In addition, many companies lack logical data consolidation, which is caused by mergers and acquisitions or other situations that forced hurried band-aiding of systems together. Data profiling informs on data quality from these sources and involves analyzing the data needed, collecting relevant statistics, and discovering problematic anomalies like start dates after associated end dates, data type inconsistencies, duplication errors, or other defects. Data analysis extends throughout any BI project. However, data profiling is best started after target data sources are isolated and PRIOR to designing or building anything. Finding out too late about major problems in data quality can adversely affect ETL and data warehouse design, even to the point of causing project cancelation. Overall, robust upfront data profiling:
- Helps confirm project effort.
- Is a key element of master data management design input.
- Speeds up end user knowledge of what can really be reported on and, therefore, can be used to adjust scope.
- Reduces the risk of finding large data inconsistencies during testing.
Automated data profiling tools can speed this process along significantly and should be seriously considered, especially for larger projects. The bottom line is this: The longer the wait to get into the nitty-gritty of data anomalies, the higher the risk of not meeting project goals and endangering the project altogether.
3. Don’t Assume Upstream Data Owners Provide Clean Source Data.
Early data profiling will likely expose “dirty data” that must be cleansed prior to loading into a data warehouse or other data storage structure — but where and when? The usual assumption is that the upstream data owners should discover and cleanse dirty data as completely as possible at the source once they are made aware of data issues. That looks great on paper but it is totally unrealistic based on time and budget constraints. These complicating factors make it almost impossible to get multiple upstream data owners to align efforts on getting data cleaned at the source:
- Different data owners’ agendas can be in competition, even with the goal of better data and hence decision-making.
- Local source changes directly to data or through application changes often conflict with the data consistency desired.
- There is likely not enough upstream budget dollars for cleansing data.
This only gets worse as the number of disparate data sources and owners increases. Unless data owners cooperate quickly and effectively, the project team should move rapidly to include additional cleansing functionality into the data staging process. The sooner this is resolved along with data owners, the quicker the additional cleansing can be fleshed out and deployed.
4. Fully Embrace Change Management.
Every IT project can benefit from a right-sized change management program and BI projects are no different. Remember to add these points to the BI project change management program:
- Retire older, legacy reporting tools according to the project schedule agreed to with end users. Don’t forget to include the costs and benefits of these retirements in the BI roadmap.
- Clearly communicate IT and business user boundaries regarding reporting data responsibility. Credible front-end tools always allow raw data downloads and business end users must agree they are fully responsible for reporting and analytics on that data.
- Don’t miss opportunities for effective education and training. This reduces Support Desk calls plus there is an opportunity to learn from trainees about additional enhancements to increase usability. Continue to keep attention on more learning by scheduling a transitional weekly or bi-weekly open support call allowing anyone to dial in and ask reporting and analytics questions.
- Keep in mind (and in action plans) the design and performance aspects that lead to higher user adoption (i.e. validated data integrity, speedy performance, availability of data discovery tools, celebrations of success and communicated plans for the future).
5. Realize that Small (and Agile) is Beautiful.
Finally, the nature of BI projects usually focuses around smaller, highly skilled teams working through iterative deployment cycles closely with business end users. Couple that with increased demand for fast time-to-value IT deployments and it’s obvious that this type of project lends itself well to an agile instead of a “big bang” project methodology. To be sure, classic agile isn’t really a best fit for every BI initiative and a standard waterfall or hybrid (i.e. “wagile”) project methodology may be needed particularly when building out, say, the data warehouse foundation. Keeping the work tightly focused on small teams, an iterative deployment cycle, and high user “touch” will likely garner quicker successes and associated longer term management support. One word of caution: It is critical to ensure that fast time-to-value means deployment to Production, not a random building of analytical prototypes never deployed.
While there are other important rules-of-thumb to observe in BI deployments, experience shows that these should be strongly considered for any BI project. Do you have any other critical observations regarding BI projects that should be mentioned? Please comment and let’s discuss.
Eric Noack is a Senior Manager in the Data Analytics Practice of CG Infinity , Inc. He has a Bachelor’s Degree in Mechanical Engineering from Texas A&M University and Masters of Business Administration from The University of Texas at Austin. His career spans over 20 years as an IT leader and consultant and he is passionate about implementing analytics and demonstrating its significant financial benefits.